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Part I: Introduction to Causal Effects



What makes a relationship causal?
• Cigarettes, damn cigarettes and statistics

Genetics

CancerSmoke

• Bradford Hill criteria (1965)

Cigarettes, damn cigarettes and statistics, Tim Harford: https://timharford.com/2015/04/cigarettes-damn-cigarettes-and-statistics/



Potential Outcomes and Counterfactuals
Suppose we are interested in the causal effects of some 
treatment 𝐴 on some outcome 𝑌.

Treatment examples:
• 𝐴 = 1 if receive active drug; 𝐴 = 0 if receive placebo
• 𝐴 = 1 if smoke; 𝐴 = 0 otherwise 

Outcome examples:
• 𝑌 = 𝑡𝑖𝑚𝑒 𝑢𝑛𝑡𝑖𝑙 𝑑𝑒𝑎𝑡ℎ
• 𝑌 = 1, if lung cancer



Potential Outcomes and Counterfactuals
• A thought experiment: parallel universe, time machine, magic

Population of Interest

World 1
Everyone gets 𝐴 = 0

World 2
Everyone gets 𝐴 = 1

𝐸(𝑌!"#) 𝐸(𝑌!"$)

• Causal Effect (Estimand): 𝐸 𝑌!"# − 𝑌!"$



Real World

Population of Interest

Some people gets 𝐴 = 0 Some people get 𝐴 = 1

𝐸(𝑌|𝐴 = 0) 𝐸(𝑌|𝐴 = 1)

• Only can observe treatment effects on subpopulations

• 𝐸 𝑌 𝐴 = 1 − 𝐸 𝑌 𝐴 = 0 is generally not a causal effect



Causal Effects
• 𝐸 𝑌!"# − 𝑌!"$ : causal risk difference. 
• 𝐸 𝑌|𝐴 = 1 − 𝐸(𝑌|𝐴 = 0): treatment effect difference, but it is 

comparing two difference populations of people.
• 𝐸 𝑌!"# − 𝑌!"$|𝐴 = 1 : causal effect of treatment on the treated.
• 𝐸 𝑌!"# − 𝑌!"$|𝑉 = 𝑣 : causal effect in the subpopulation with 

covariate 𝑉 = 𝑣. 

• 𝐸 %!"#

%!"$
: causal relative risk. 



Caveats of Causal Effects
“No causation without manipulation.” - Holland (1986)
• Causal effects of (hypothetical) interventions are generally 

well-defined and actionable, e.g., drug A vs. drug B. 
• Hidden versions of treatment, e.g., body mass index (BMI).
• Immutable variables, e.g., race, gender, age.

• The Fundamental Problem of Causal Inference is that we can 
only observe one potential outcome for each person.

• 𝑌*+,- − 𝑌*+,.: individual treatment effect (ITE), hopeless.
• 𝐸(𝑌+,- − 𝑌+,.): average treatment effect (ATE), possible with models 

and assumptions.



Causal Assumptions
• Identifiability of causal effects 𝐸(𝑌!"# − 𝑌%"$) requires some 

untestable assumptions. These are generally called causal 
assumptions.

• The most common are:
• Stable Unit Treatment Value Assumption (SUTVA)
• Consistency
• Ignorability
• Positivity

• Assumptions will be about the observed data: outcome - 𝑌, 
treatment - 𝐴, and a set of pre-treatment covariates - 𝑋.



SUTVA
The Stable Unit Treatment Value Assumption (SUTVA) really 
involves two assumptions. 
• No interference:

• Units do not interfere with each other.
• Treatment assignment of one unit does not affect that outcome of 

another unit.
• Spillover or contagion are also terms for interference.

• One version of treatment

SUTVA allows us to write potential outcome for the 𝑖&' person in 
terms of only that person’s treatment.



Consistency
The consistency assumption (no different versions of treatment):
The potential outcome under treatment 𝐴 = 𝑎, i.e., 𝑌(, is equal to 
the observed outcome if the actual treatment received is 𝐴 = 𝑎.

𝑌 = 𝑌( , if 𝐴 = 𝑎, for all 𝑎



Ignorability
The ignorability* assumption:
Given pre-treatment covariates 𝑋, treatment assignment is 
independent from the potential outcomes.

𝑌$, 𝑌# ⊥ 𝐴|𝑋

• Among people with same values of 𝑋, we can think of treatment 
𝐴 as being randomly assigned.

• Note it does not imply that the observed outcome 𝑌 ⊥ 𝐴. In fact, 
𝑌 = 𝑌#𝐴 + 𝑌$ 1 − 𝐴 = 𝐴 𝑌# − 𝑌$ + 𝑌$. Therefore, 𝑌 ⊥ 𝐴 ⟺
𝑌# = 𝑌$ (null hypothesis of no treatment effect).

* sometimes referred to as the "no unmeasured confounders" assumption



Positivity
The positivity assumption states that, for every set of values of 𝑋, 
treatment assignment is not deterministic:

𝑃 𝐴 = 𝑎 𝑋 = 𝑥 > 0, for all 𝑎 and 𝑥

Everybody has some chances of getting either treatment. 
Otherwise, we will have no information for some subpopulations.

Solution if violation: redefine the population of interest.



Causal Estimands
We can put causal assumptions together to identify causal effects.

𝐸(𝑌|𝐴 = 𝑎, 𝑋 = 𝑥) involves only the observed data.

𝐸 𝑌 𝐴 = 𝑎, 𝑋 = 𝑥 = 𝐸 𝑌! 𝐴 = 𝑎, 𝑋 = 𝑥 by consistency
= 𝐸 𝑌! 𝑋 = 𝑥 by ignorability

If we want a marginal causal effect, we can average over 𝑋.

𝐸 𝑌! = 𝐸 𝐸 𝑌! 𝑋 =9
"
𝐸 𝑌|𝐴 = 𝑎, 𝑋 = 𝑥 𝑃(𝑋 = 𝑥)



Part II: Confounding and Directed Acyclic 
Graphs (DAGs)

I'll talk more about this at next week's group meeting.



Confounding
Recall the causal effects, e.g., 𝐸(𝑌# − 𝑌$).

To be able to estimate it from observational data, we make 
several assumptions, including ignorability: 𝑌$, 𝑌# ⊥ 𝐴|𝑋

• Violation means treatment assignment depends on the potential 
outcomes even within each stratum of the pre-treatment covariates 𝑋, 
i.e., treatment assignment is not randomized within levels of 𝑋.

• Assuming the marginal independence between potential outcomes and 
treatment assignment 𝑌., 𝑌- ⊥ 𝐴 is too strong. It is probably only valid 
in randomized controlled trials (RCTs).

• The question is how to identify a set of variables 𝑋 that will make the 
ignorability assumption hold.



Confounding
Confounders are often defined as variables that affect both the 
treatment and the outcome.

• If assign treatment based on a coin flip, then that affects treatment but 
should not affect the outcome (the coin flip is not a confounder).

• If people with a family history of cancer are more likely to develop 
cancer (the outcome), but family history is not a factor in the treatment 
decision. Family history is not a confounder (it is a risk factor). 

• If older people are at higher risk of cardiovascular disease (the 
outcome) and are more likely to receive statins (the treatment), then 
age is a confounder.

Only affect
treatment

Only affect 
outcome – risk 

factor

C
on

fo
un

de
r



DAG
Recall the informal definition of a confounder:

• A variable that affects both the treatment and the outcome.

A simple direct acyclic graph (DAG) where 𝑋 is a confounder 
between the relationship between treatment 𝐴 and outcome 𝑌:

𝑋
𝐴 𝑌

Here 𝑋 is sufficient to control for confounding, because 
ignorability holds: 𝑌#, 𝑌$ ⊥ 𝐴|𝑋. 



DAG
Consider more complex examples:

𝑉 𝑊

𝐴 𝑌

𝑉 𝑊

𝐴 𝑌
𝑀

𝑈$

𝑈%

𝐴 𝑌

𝑊

𝑉

𝑀

DAG 1 DAG 2 DAG 3

Sets of variables that are 
sufficient to control for 
confounding:
• {𝑉}
• {𝑊}
• {𝑉,𝑊}

Sets of variables that are 
sufficient to control for 
confounding:
• ∅, {𝑉}, {𝑊}, {𝑀, 𝑉}, {𝑀,𝑊}, 
{𝑀, 𝑉,𝑊}

• But not {𝑀}

Sets of variables that are 
sufficient to control for 
confounding:
• {𝑈!}, however, it is 

unobservable
• Unachievable with observed 

variables {𝑀,𝑊, 𝑉}



DAG
We will formally introduce the DAG in next week’s talk.

DAGs help us effectively determine the set of variables to control for to 
achieve ignorability.

• We’ll see that DAGs encode probability distributions.
• We’ll be able to recognize different types of paths and understand which of 

them induce association between nodes.
• We’ll see how to block paths to impose conditional independence (d-

separation).
• We’ll use the backdoor path criterion and the disjunctive cause criterion to 

determine if a set of variables is sufficient to control for confounding.

Once we know which variables to control for them, the question is how
to control for them. 
General approaches include matching and inverse probability of 
treatment weighting.



Part III: Matching and Propensity Scores



Observational Studies
Population of Interest

Randomly selected 
group gets 𝐴 = 0

Randomly selected 
group gets 𝐴 = 1

𝒫&|!"# 𝒫&|!"$

𝒫&

=𝒟

𝑋
𝐴 𝑌

Randomized controlled trials

Population of Interest

Some people 
get 𝐴 = 0

Some people 
get 𝐴 = 1

𝒫&|!"# 𝒫&|!"$

𝒫&

≠
𝒟

Observational studies

𝑋
𝐴 𝑌



Observational Studies
Observational studies:
• e.g., electric health records, 

claims, registries.
• Large sample sizes; 

inexpensive; potential for 
rapid analysis.

• Data quality typically lower; 
no uniform standard of 
collection.

Randomized trials:
• Covariates are balanced by 

design.
• Expensive; sometimes 

unethical; people might 
refuse to participate in 
trials; time-sensitive, by the 
time you have outcome 
data, the question might no 
longer be relevant.



Matching
Matching is a method that attempts to make an observational study 
more like a randomized trial.

Main idea:
• Match individuals in the treated group (𝐴 = 1) to individuals in the control 

group (𝐴 = 0) on the covariates 𝑋.
• e.g., in the case where older people are more likely to receive treatment, we 

can match treated people to control people of the same age, so that there will 
be about the same number of treated and controls at any age.

• Matching needs to be done at the design phase, i.e., blinded to the outcomes.
• Matching doesn’t always produce perfect balance. Nevertheless, it will reveal 

lack of overlap in covariate distribution.  
• Once data are matched, we can treat them as if from randomized trial. 

Downstream analysis can be simple.



Conceptualize matching using single covariate.
• The goal is to achieve stochastic balance 𝒫6|+,. ↝

𝒟
𝒫6|+,-.

• Notice that we are making the distribution of covariates in the control 
population look like that in the treated population, thus the causal effect 
will be on the treated population. 

• More details, e.g., target population, fine balance, number of matches.

Matching



Matching Procedures
1. Select a set of pre-treatment covariates 𝑋 that (hopefully) 

satisfy the ignorability assumption.
2. Calculate the distance matrix 𝐷 = 𝑑12 ∈ ℝ$34×6 that contains 

the pairwise distance 𝑑12 = 𝒟 𝑋1 , 𝑋2 between each treated 
subject and control subject.

• e.g., Mahalanobis distance 𝒟 𝑋*, 𝑋8 ≔ 𝑋* − 𝑋8
9Σ:- 𝑋* − 𝑋8 . 

• Replace each covariate value with its rank to get robust distance.
3. Minimize the total distance measure (optimal matching).

• Can use greedy matching to speed up. 
• Can impose constraints such as caliper (maximum acceptable 

distance), sparsity (e.g., match within hospitals).



Matching Procedures
4. Assess covariates balance.

Table 1: Patient baseline characteristics table 

5. Analyze post-matching data.
• Test for treatment effects.
• Estimate treatment effects and confidence 

intervals.
• Methods should take matching into account.

6. Perform sensitivity analysis.
• Check for hidden bias due to unmeasured 

confounders.

Standardized Mean Difference 
(SMD) plot



Propensity Score
The propensity score is the probability of receiving treatment, rather 
than control, given covariates 𝑋.
Denote the propensity score for subject 𝑖 by 𝜋# = 𝜋(𝑋#) = 𝑃(𝐴 = 1|𝑋#).

• Suppose age is the only 𝑋 variable, and older people are more likely to get 
treatment. 

• That is, 𝜋! > 𝜋" if 𝑋! > 𝑋". Then, 𝑃 𝐴 = 1 age = 60 > 𝑃(𝐴 = 1|age = 30).
• 𝜋! = 0.3 means that if a person 𝑖 has a propensity score value of 0.3, given 

that person’s covariate value 𝑋!, there is a 30% chance the person will be 
treated.

Lemma. Assuming ignorability, i.e., 𝑌$, 𝑌% ⊥ 𝐴|𝑋, then 

𝑌$, 𝑌% ⊥ 𝐴|𝜋(𝑋).

• Propensity score is a dimension reduction technique.



Balancing Score
Suppose two subjects have the same value of the propensity 
score, but they possibly have different covariate values 𝑋.

Despite the different covariate values, they are both equally likely 
to be treated.

• This means that both subjects’ 𝑋 is just as likely to be found in the 
treatment group.

• If you restrict to a subpopulation of subjects who have the same value 
of the propensity score, there should be balance in two treatment 
groups.

• Thus, the propensity score is a balancing score.



Balancing Score
More formally, 𝑏(𝑋) is a balancing score if 𝐴 ⊥ 𝑋|𝑏 𝑋 , i.e.,

𝑃 𝑋 = 𝑥 𝑏 𝑋 = 𝑝, 𝐴 = 1 = 𝑃(𝑋 = 𝑥|𝑏 𝑋 = 𝑝, 𝐴 = 0)

Remark: 𝑏(𝑋) is a balancing score if and only if it is finer than the 
propensity score, i.e., 

𝜋 𝑋 = ℎ 𝑏 𝑋 for some function ℎ.

If we match on the any balancing score, we should achieve balance,

𝑌$, 𝑌% ⊥ 𝐴|𝑏 𝑋 .



Estimated Propensity Score
In a randomized trial, the propensity score is generally known, 
e.g., 𝑃 𝐴 = 1 𝑋 = 𝑃 𝐴 = 1 = 0.5.

In an observational study, it will be unknown.
• We therefore need to estimate it from the observed data.
• Typically when people talk about a propensity score, they are referring 

to the estimated propensity score <𝜋*.
• Nonparametric: 

<𝜋 𝑥 =
@𝑃(𝐴 = 1, 𝑋 = 𝑥)

@𝑃 𝑋 = 𝑥
• Parametric:

logit 𝜋 𝑋; 𝛾 = 𝑋9𝛾



Propensity Score Matching
Follows the general matching procedure.

In practice, 𝒟 𝑋1 , 𝑋2 ≔ logit 𝜋 𝑋1 − logit 𝜋(𝑋2) .
• The propensity score is bounded between 0 and 1, making many 

values seem similar.
• Use logit to transform the propensity score to ℝ, while preserving 

ranks.



Part IV: Inverse Probability of Treatment 
Weighting (IPTW)



Intuition for IPTW
Rather than match, we could use all the data, but down-weight 
over-representative ones and up-weight under-representative 
ones.

Weight: $
)(!"$|&"$)

= $
#.$
= 10 Weight: $

)(!"#|&"$)
= $

#.-
= $#

-



Intuition for IPTW
We can create a pseudo-population by weighting by the inverse 
of the probability of treatment received.

• For treated subjects, weight by the inverse of 𝑃 𝐴 = 1 𝑋 = 𝜋 𝑋 .
• For control subjects, weight by the inverse of 𝑃 𝐴 = 0 𝑋 = 1 − 𝜋 𝑋 .

Hence, it is called the inverse probability of treatment weighting 
(IPTW).

• In the pseudo-population, treatment assignment doesn’t depend on 𝑋.



IPTW Estimator
Under the assumption of ignorability and positivity, we can 
estimate 𝐸 𝑌# as

∑%"#
& 8 !%"#

'%
()%

∑%"#
& * !%"#

()%

, 

where J𝜋1 = K𝑃(𝐴 = 1|𝑋1) is the estimated propensity score.

Sum of the Y’s in 
treated pseudo-
population

Number of subjects 
in treated pseudo-
population



Marginal Structural Models
Motivation
• Previously we discussed IPTW estimation for simple causal 

effects, such as an average causal effect.
• However, IPTW estimation methods can be used more 

generally to estimate causal effect parameters from models.



Marginal Structural Models
Linear MSM:

𝐸 𝑌( = 𝜓$ + 𝜓#𝑎, 𝑎 = 0, 1

• 𝐸 𝑌$ = 𝜓$
• 𝐸 𝑌# = 𝜓# − 𝜓$
• 𝜓# is the average causal effect 𝐸(𝑌# − 𝑌$)



Marginal Structural Models
Logistic MSM for binary outcome:

logit 𝐸 𝑌( = 𝜓$ + 𝜓#𝑎, 𝑎 = 0,1

• exp 𝜓# is the causal odds ratio

𝑃(𝑌# = 1)
1 − 𝑃(𝑌# = 1)
𝑃(𝑌$ = 1)

1 − 𝑃(𝑌$ = 1)

Odds that 𝑌$ = 1

Odds that 𝑌# = 1



Marginal Structural Models
• MSMs can also include effect modifiers.
• Suppose 𝑉 is a variable that modifies the effect of 𝐴.
• A linear MSM with effect modification:

𝐸 𝑌( 𝑉 = 𝜓$ + 𝜓#𝑎 + 𝜓9𝑉 + 𝜓:𝑎𝑉, 𝑎 = 0,1

• 𝐸 𝑌# − 𝑌$ 𝑉 = 𝜓# + 𝜓:𝑉



Marginal Structural Models
General MSM:

𝑔 𝐸 𝑌( 𝑉 = ℎ(𝑎, 𝑉; 𝜓)

• where 𝑔() is a link function.
• ℎ() is a function specifying parametric form of 𝑎 and 𝑉 (typically 

additive, linear).



IPTW Estimation
• Recall the generalized estimation equation (GEE) of a generalized 

linear model (GLM):

𝐸 𝑌# 𝑋# = 𝜇# = 𝑔&% 𝑋#'𝛽

• Estimation involves solving

9
#(%

)
𝜕𝜇#'

𝜕𝛽
𝑉#&% 𝑌# − 𝜇# 𝛽 = 0

for 𝛽.



IPTW Estimation
• Recall that the pseudo-population (obtained from IPTW) is free 

from confounding (assuming ignorability and positivity).
• We can therefore estimate MSM parameters by solving the 

weighted estimating equation

S
1"#

6
𝜕𝜇1;

𝜕𝜓
𝑉1<#𝑤1 𝑌1 − 𝜇1 𝜓 = 0

• where 𝑤1 =
#

!%=>%3 #<!% #<=>%
.



IPTW Estimation
• We can estimate 𝐸 𝑌! using IPTW:

1
𝑛
&
"#!

$
𝐴"𝑌"
(𝜋"

• If the propensity score is correctly specified, this estimator is unbiased:

𝐸
𝐴𝑌
𝜋 𝑋

= 𝐸
𝐴𝑌!

𝜋 𝑋
by 𝐴𝑌 = 𝐴 𝐴𝑌! + 1 − 𝐴 𝑌% = 𝐴𝑌!

= 𝐸 𝐸
𝐴𝑌!

𝜋 𝑋 |𝑌!, 𝑋 by law of total expectation

= 𝐸 𝐸 𝐴|𝑌!, 𝑋
𝑌!

𝜋 𝑋

= 𝐸 𝐸 𝐴|𝑋
𝑌!

𝜋 𝑋
by ignorability

= 𝐸 𝜋 𝑋
𝑌!

𝜋 𝑋
= 𝐸(𝑌!)



Regression-Based Estimation
• Alternatively, we could estimate 𝐸(𝑌#) by specifying an outcome 

model 𝑚# 𝑋 = 𝐸 𝑌 𝐴 = 1, 𝑋 and then average over the 
distribution of 𝑋:

1
𝑛
S
1"#

6

𝐴1𝑌1 + 1 − 𝐴1 𝑚#(𝑋1)

• If outcome model is correctly specified, then this estimator is 
unbiased.

For subjects 
with 𝐴 = 1, use 
observed 𝑌

For other subjects, use 
predicted value of 𝑌 given 
their 𝑋, if their 𝐴 had been 1



Doubly Robust Estimators
• A doubly robust estimator is an estimator that is unbiased if 

either the propensity score model or the outcome regression 
model are correctly specified.

• Example:

1
𝑛
S
1"#

6
𝐴1𝑌1
J𝜋1

−
𝐴1 − J𝜋1
J𝜋1

𝑚#(𝑋1)

IPTW Augmentation



Doubly Robust Estimators
• If propensity score is correct, but outcome model is not:

1
𝑛
S
1"#

6
𝐴1𝑌1
J𝜋1

−
𝐴1 − J𝜋1
J𝜋1

𝑚#(𝑋1)

Expectation of this is equal 
to propensity score

This part has expectation 0



Doubly Robust Estimators
• If propensity score is wrong, but outcome model is correct:

1
𝑛
S
1"#

6
𝐴1𝑌1
J𝜋1

−
𝐴1 − J𝜋1
J𝜋1

𝑚#(𝑋1)

=
1
𝑛
S
1"#

6
𝐴1 𝑌1 −𝑚# 𝑋1

J𝜋1
+𝑚#(𝑋1)

This part has expectation 0 This part goes to 𝐸(𝑌$)



Doubly Robust Estimators
• These estimators are also known as augmented IPTW (AIPTW) 

estimators.
• Can use semiparametric theory to identify best estimators.
• In general, AIPTW estimators should be more efficient than regular 

IPTW estimators.



IPTW in Practice
Steps:
1. Estimate propensity score (e.g., LR: 𝐴~𝑋).
2. Create weights (𝑤1 =

#
!%=>%3 #<!% #<=>%

).

3. Specify the MSM of interest.
4. Use software to fit a weighted generalized linear model.

(e.g., glm.obj <- glm(y ~ trt, weights = w, family = binomial(link = log)))
5. Use asymptotic (sandwich) estimator (or bootstrapping) to get 

standard error.
(e.g., SE <- sqrt(diag(vcovHC(glm.obj, type = “HC0”))))



IPTW in Practice
• Also need to assess balance for pseudo-population.
• Might have large weights lead to large standard errors.

• Check distribution of weights.
• Trim tail weights or perform weight truncation: biased estimator, smaller 

variance. Both methods can lead to overall better estimators (lower 
MSE).


