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Motivation

« How predictive is PRS? It is usually quantified by the R? of the regression

of Trait~PRS.

* However, this process is often sabotaged by overlapping of training and

testing samples (overfitting), resulting in inflated R? and effect sizes.

« We want to fix the sample-overlapping problem, i.e., to obtain a robust

estimation of R?.

« Specifically, we want to achieve it by only using GWAS summary statistics.



Polygenic Risk Scores (PRS)

A polygenic risk score (PRS) is a sum of trait-associated alleles across
many genetic loci, typically weighted by effect sizes estimated from a

genome-wide association study [1].

* Polygenic Risk Scores (PRS) have recently been used to summarize
genetic effects among an ensemble of markers that do not individually

achieve significance in a large-scale association study [2].

* There have also been interests in cross trait PRS analysis. For example,
“polygenic risk scores for schizophrenia and bipolar disorder predict
creativity” [3], etc. And the BADGERS [4].



Example of Overfitting

100% overlapping zero overlapping

Scatter Plot for WLS predicted by WLS Scatter Plot for WLS Replication Cohort Predicted by WLS
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Example of Overfitting

inflated R? inflated effect sizes

Simulated R*2 (calculated by individual level data)

—— Expected Gamma (1st-order approx.)
Approximated Expected Gamma
—— Simulated Mean Gamma
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Methods Overview

 Goal — derive the expected R? assuming no sample overlapping
* Model Setup

« Assumptions

 Derivation

 Results




Model Setup

yO = xWy® 4 ¢ ~N(, (1 = hD)I)
y@ = x@y@ 4 5 §~N(0,(1 — h3)D)
- yU) € RM*1- quantitative trait j, has n; samples.

- XU e RM*P- genotypic data (design matrix of trait j), each contains n; samples, p SNPs, has
been standardized.

- wl) e RPX1 _ effect sizes of trait j, corresponding to p SNPs.

- € € R*1 § € R™*1 - non-genetic (environmental) factors, random vectors.

. hjz - heritability of trait j, stands for the degree of variation in a phenotypic trait in a population

that is due to genetic variation between individuals in that population.

* This is a polygenic model and the effect sizes w have infinitesimal prior.




Model Setup

« Genome-wide Association Studies (GWAS) are generally conducted by
performing marginal linear regression, i.e., regress the trait on each SNP.

* It is computationally feasible.

- It is theoretically unstable to estimate full polygenic model (n << p).

« It can also tag indirect association because of linkage disequilibrium (LD), which is

actually helpful.
 Summary Statistics

. iXTy, se(w), etc.

* They are largely available and sharable.
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Model Setup

Overlapping setting
y(l,S) _ (X(1,s)) oM < () )

[
y(Z,S) _ (X(Z,s)> w® + ( 5 )
y(Z.*) x (29 5%
[ )

« X@s) and X9 are the genotype of overlapping samples. They not strictly the same, since they might be
standardized separately. But if the sample size n; and n, are relatively large enough, we may regard them as the

same X©) in the calculation.

Correlated non-genetic factors (for overlapping samples)

(1 - KDy, Js :
) (g) ~N <O'< pe]zT (1 —phg)1n2>>' Js = (IO 8)n1xn2

* Pe = re\/(l — h3)(1 — h2) is the non-genetic covariance, 7, is the non-genetic correlation.
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Model Setup

* Polygenic Risk Score (PRS)

A 1
P = x@p® = — x@x®",0)

n,

» Consider the simple linear regression y(?) ~ ¢
y@ =q+yt+¢&
* How to estimate the effect size y using summary statistics? (BADGERS)

- How to estimate the R? using summary statistics?

« What if there is sample overlapping?
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Assumptions

» Genotypic data has normal prior

x ()
(X(l’*)> “ni+n,-sp (0,1 ®%)
x (2%)

 All individuals are independent.

« SNPs has correlation (LD) matrix Z,,.,.

 Effect sizes have infinitesimal prior

(1) 2
w; 1 /h

1(2) ~ N 0,—( 1 ,02> ,i=1,---,P
w; p\p hj

* p =rhyh, is the genetic covariance, r is the genetic correlation.
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Derivation

. E(RZ) — E(E(R2|X, W)) —r (E (y(Z)Tf(fo)_lny(z) |X, W))

y@Ty @)

cE@) = E(E@IX,w)) = E (ETD) Ty @|x,w)




Results

« Expected R? (no sample overlapping)

LZ
(1- h%)(l - h%)Lz + (1 - hz)h1 (n; + p) 2 + (1 - hz)hz (ny + p) 2 + Tzhzhznan p? L2 1-— h2 L
~ T - rZhZ 7 + L—Z,n1 - 0
s=0 n, (Lz n hznl p3) 3 n, L3

E(

* L, =tr(Z%) = sum(LD scores)

o Ly =tr(z® > 2 hard to estimate.

» Expected effect size y estimation (sample overlapping considered)

rh1

spepy @ — DA = 1) + 212 (., + )L, + 5p?)

E(?) ~ny 2

(1 = hH)((yny + s)L, + sp?) + %1 (((an +4)s + nyny(ng + 1)Lz + p((2ny + 3)s + nyny )L, + sp3)
_ rhih,n, L,
N pLZ + h%(nl + 1 )L3 s=0

hy Ly
->r——ny; o ©

hy L3
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Proposed method for robust R“ estimation

» Use LD score regression to estimate heritability and genetic

correlation since it is robust to the sample overlapping problem.

« Use the formula we just derived, plug in the estimated
heritability and genetic correlation to get a (hopefully) good

estimation of R=2.



Simulation Pipeline

» Data source: WTCCC genotype data (n = 15918,p = 336345)
* QC (MAF cutoff = 0.05)

« Create sample-overlapping training and testing set (equal size)

» Overlapping rate (0%, 20%, 40%, 60%, 80%, 100%)

» Use R and GCTA to simulate phenotype.

» For every set of parameters (hq, h,,7,1,), repeat 10 times, on 1 training dataset and 6 testing dataset.

» Use PLINK to perform GWAS.

 Use PRSice to calculate PRS.

« Regress the testing phenotype on PRS to get empirical R?

« Use LDSC to estimate heritability and genetic covariance [5, 6].

« Plug the estimation into our formula to get robust inferred R?




Simulation Results (LDSC)
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Simulation Results

h1=05 h2=05r=1re=1

Empirical R*2 Inferred Robust R*2
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Simulation Results
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Simulation Results
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Simulation Results

h1=07, h2=08 r=09 re= 03

Empirical R*2 Inferred Robust R*2
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Simulation Results
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Simulation Results
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Simulation Results
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Simulation Results

h1=07, h2=08 r= 01, re= 03

Empirical R*2 Inferred Robust R*2
< <
o o 4
o _— o

-7 0.0324
: A
[aed : [aed
q — ' Q -
o : PR E— o
0.0256
N o . NN
e g n 0.0186 & g n

0.0‘124

o
S S
o o

0.00091
e 0.0g935 0.06048 0.00068 [—OWH
8 | — 8 | o e | e ]
o (=]
[ I I I ! I [ [ I I I I
0 1592 3184 4776 6368 7959 0 1592 3184 4776 6368 7959
# of Overlapping Samples # of Overlapping Samples

0-overlapping average = 3e-04 average = 7e-04




Comparison of LD scores

Training LD scores vs. 1000 Genome EU LD scores

Scatter plot Q-Q plot
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Future Work

* Try our method on real data.
* How do we quantify our estimator’s variability?
« Change number of SNPs in PRS calculation.

« How to better estimate LD related quantities by using publicly available

data?
« What if we have individual-level testing set, can we improve?
« What if we assume heterogeneous SNP effect sizes?

« Would results still hold if we assume a mild assumption on genotype?
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