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Motivation
• How predictive is PRS? It is usually quantified by the 𝑅! of the regression 

of 𝑇𝑟𝑎𝑖𝑡~𝑃𝑅𝑆. 

• However, this process is often sabotaged by overlapping of training and 
testing samples (overfitting), resulting in inflated 𝑅! and effect sizes.

• We want to fix the sample-overlapping problem, i.e., to obtain a robust 
estimation of 𝑅!.

• Specifically, we want to achieve it by only using GWAS summary statistics.



Polygenic Risk Scores (PRS)
• A polygenic risk score (PRS) is a sum of trait-associated alleles across 

many genetic loci, typically weighted by effect sizes estimated from a 
genome-wide association study [1].

• Polygenic Risk Scores (PRS) have recently been used to summarize 
genetic effects among an ensemble of markers that do not individually 
achieve significance in a large-scale association study [2].

• There have also been interests in cross trait PRS analysis. For example, 
“polygenic risk scores for schizophrenia and bipolar disorder predict 

creativity” [3], etc. And the BADGERS [4]. 



Example of Overfitting
100% overlapping zero overlapping



Example of Overfitting
inflated effect sizesinflated 𝑅!



Methods Overview

• Goal – derive the expected 𝑅! assuming no sample overlapping

• Model Setup

• Assumptions

• Derivation

• Results



Model Setup
𝑦 ! = 𝑋 ! 𝑤 ! + 𝜖, 𝜖~𝑁 0, 1 − ℎ!" 𝐼

𝑦 " = 𝑋 " 𝑤 " + 𝛿, 𝛿~𝑁 0, 1 − ℎ"" 𝐼

• 𝑦(") ∈ 𝑅$!×&- quantitative trait 𝑗, has 𝑛" samples.

• 𝑋 " ∈ 𝑅$!×'- genotypic data (design matrix of trait 𝑗), each contains 𝑛" samples, 𝑝 SNPs, has 
been standardized.

• 𝑤 " ∈ 𝑅'×& - effect sizes of trait 𝑗, corresponding to 𝑝 SNPs.

• 𝜖 ∈ 𝑅$"×&, 𝛿 ∈ 𝑅$#×& - non-genetic (environmental) factors, random vectors.

• ℎ"( - heritability of trait 𝑗, stands for the degree of variation in a phenotypic trait in a population 
that is due to genetic variation between individuals in that population.

• This is a polygenic model and the effect sizes 𝑤 have infinitesimal prior.



Model Setup
• Genome-wide Association Studies (GWAS) are generally conducted by 

performing marginal linear regression, i.e., regress the trait on each SNP.
• It is computationally feasible.

• It is theoretically unstable to estimate full polygenic model (n << p).

• It can also tag indirect association because of linkage disequilibrium (LD), which is 
actually helpful.

• Summary Statistics

• 1𝑤 = !
#
𝑋$𝑦, 𝑠𝑒 1𝑤 , etc.

• They are largely available and sharable.



Model Setup
• Overlapping setting

𝑦 !,#

𝑦 !,∗ = 𝑋 !,#

𝑋 !,∗ 𝑤 ! + 𝜖 #

𝜖 !,∗

𝑦 %,#

𝑦 %,∗ = 𝑋 %,#

𝑋 %,∗ 𝑤 % + 𝛿 #

𝛿 %,∗

• 𝑋 $,& and 𝑋 ',& are the genotype of overlapping samples. They not strictly the same, since they might be 
standardized separately. But if the sample size 𝑛$ and 𝑛' are relatively large enough, we may regard them as the 
same 𝑋(&) in the calculation.

• Correlated non-genetic factors (for overlapping samples) 

• 𝜖
𝛿 ~𝑁 0,

1 − ℎ!" 𝐼#! 𝜌$𝐽%
𝜌$𝐽%& 1 − ℎ"" 𝐼#"

, 𝐽% =
𝐼% 0
0 0 #!×#"

• 𝜌* = 𝑟* (1 − ℎ$')(1 − ℎ'') is the non-genetic covariance, 𝑟* is the non-genetic correlation.



Model Setup

• Polygenic Risk Score (PRS)

𝑡̂ = 𝑋(.)%𝑤(0) =
1
𝑛0
𝑋 . 𝑋 0 1

𝑦 0

• Consider the simple linear regression 𝑦(.) ∼ 𝑡̂

𝑦(.) = 𝛼 + 𝛾𝑡̂ + 𝜉

• How to estimate the effect size 𝛾 using summary statistics? (BADGERS)

• How to estimate the 𝑅! using summary statistics?

• What if there is sample overlapping?



Assumptions
• Genotypic data has normal prior

𝑋($)
𝑋 &,∗

𝑋 !,∗
~𝑁)0*)1+$,, 0, 𝐼 ⨂Σ

• All individuals are independent.

• SNPs has correlation (LD) matrix Σ/×/. 

• Effect sizes have infinitesimal prior

𝑤-
&

𝑤-
! ∼ 𝑁 0,

1
𝑝

ℎ&! 𝜌
𝜌 ℎ!!

, 𝑖 = 1,… , 𝑝

• 𝜌 = 𝑟ℎ!ℎ" is the genetic covariance, 𝑟 is the genetic correlation.



Derivation

• 𝐸 𝑅! = 𝐸 𝐸 𝑅!|𝑋, 𝑤 = 𝐸 𝐸 7 ! " 89 89" 89
#$ 89"7 !

7 ! "7 ! |𝑋, 𝑤

• 𝐸 (𝛾 = 𝐸 𝐸 (𝛾|𝑋, 𝑤 = 𝐸 𝑡̂: 𝑡̂ ;<𝑡̂:𝑦 ! |𝑋, 𝑤



Results
• Expected 𝑅! (no sample overlapping) 

𝐸 𝑅% 4
#&'

≈
1 − ℎ!% 1 − ℎ%% 𝐿% + 1 − ℎ%% ℎ!% 𝑛! + 𝑝

𝐿%
𝑝 + 1 − ℎ!% ℎ%% 𝑛% + 𝑝

𝐿%
𝑝 + 𝑟%ℎ!%ℎ%%𝑛!𝑛%

𝐿%%
𝑝%

𝑛% 𝐿% + ℎ!%𝑛!
𝐿(
𝑝

→ 𝑟%ℎ%%
𝐿%%

𝑝𝐿(
+
1 − ℎ%%

𝑛%
𝐿%
𝐿(
, n! → ∞

• 𝐿% = 𝑡𝑟 Σ% = sum(LD scores)

• 𝐿( = 𝑡𝑟 Σ( ≥ )""

*
, hard to estimate.

• Expected effect size 𝛾 estimation (sample overlapping considered)

𝐸 M𝛾 ≈ 𝑛!
𝑠𝜌+𝑝 1 − ℎ!% 1 − ℎ%% + 𝑟ℎ!ℎ%𝑝 𝑛!𝑛% + 𝑠 𝐿% + 𝑠𝑝%

1 − ℎ!% 𝑛!𝑛% + 𝑠 𝐿% + 𝑠𝑝% + ℎ!
%
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=
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, 𝑛! → ∞



Proposed method for robust 𝑅! estimation

• Use LD score regression to estimate heritability and genetic 

correlation since it is robust to the sample overlapping problem.

• Use the formula we just derived, plug in the estimated 

heritability and genetic correlation to get a (hopefully) good 

estimation of 𝑅!.



Simulation Pipeline
• Data source: WTCCC genotype data (𝑛 = 15918, 𝑝 = 336345)

• QC (MAF cutoff = 0.05)

• Create sample-overlapping training and testing set (equal size)

• Overlapping rate (0%, 20%, 40%, 60%, 80%, 100%)

• Use R and GCTA to simulate phenotype.

• For every set of parameters (ℎ$, ℎ', 𝑟, 𝑟*), repeat 10 times, on 1 training dataset and 6 testing dataset.

• Use PLINK to perform GWAS.

• Use PRSice to calculate PRS.

• Regress the testing phenotype on PRS to get empirical 𝑅'

• Use LDSC to estimate heritability and genetic covariance [5, 6].

• Plug the estimation into our formula to get robust inferred 𝑅'



Simulation Results (LDSC)



Simulation Results (LDSC)



Simulation Results



Simulation Results
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Simulation Results



Simulation Results



Simulation Results



Comparison of LD scores

𝑅# = 0.7897



Future Work
• Try our method on real data.

• How do we quantify our estimator’s variability?

• Change number of SNPs in PRS calculation.

• How to better estimate LD related quantities by using publicly available 

data?

• What if we have individual-level testing set, can we improve?

• What if we assume heterogeneous SNP effect sizes?

• Would results still hold if we assume a mild assumption on genotype?
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